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HEAT TRANSFER FROM A SPHERE TO RAREFIED
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Abstract—Measurements of the heat-transfer coefficient from a sphere to rarefied gas mixtures have been
made over a range of Knudsen number, Kn, of 0:008-0-4 by utilizing a thermistor. The experimental results
on the relation of Nu to Kn and a,,;, were in good agreement with our analytical equation
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NOMENCLATURE Div,  divergent operator [dimensionless];
A, area of heat-transfer surface [cm?]; D, characteristic length of thermistor
B, thermistor constant [degK]; [em];
+ Rescarch Associate. 1 veloglty dslst.rlbutlon function
1 A member of nuclear chemical engineering section. [s / cm ] ’ )
§ Professor, Dr., (Eng.). Grad, gradient operator [dimensionless];
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h, heat-transfer coefficient
[cal/scm?degK];

1, electric current [A];

Js mechanical equivalent of heat
[J/cal];

K, proportional constant in Maxwell’s

inverse fifth power law [cm®/gs?];

Kn,  Knudsen number [dimensionless];

k, Boltzmann constant [erg/degK];

L,, mean free path of gas [cm];

L., mean free path of gas mixture [cm];

M, molecular weight [g/mol];

M, mean molecular weight [g/mol];

m, mass of molecule [g];

Nu,  apparent Nusselt number [dimen-
sionless];

Nu*, actual Nusselt number [dimension-
less];

P, pressure [dyne/cm?], or [mmHg];

0. heat transfer from thermistor by any
mechanism other than conduction
through gas, [cal/s];

4 radial heat flux [cal/scm?];

R, universal  gas  constant [erg/
moldegK];

R, resistance of thermistor [Q];

R,. resistance of thermistor at tempera-
ture T, [Q];

Ry, radius of sphere [cm];

r radial distance [cm];

F, normalized radial distance [dimen-
sionless];

T,, wall temperature of thermistor [°K];

u, internal energy [erg/molecule];

v, velocity of molecule [cm/s];
X, external force [dyne];

X, mole fraction [dimensionless].
Greek symbols

a, cos~! Ry/r [dimensionless];

o, accommodation coefficient [dimen-
sionless];

o, accommodation coefficient of gas mix-
tures [dimensionless];

Ags thermal conductivity of gas [cal/

cmsdegK];
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Ami»  thermal conductivity of gas mixture
[cal/cmsdegK];

K, ratio of internal energy to transla-
tional energy, dimensionless ;

U, viscosity of gas [g/cms];

Umi  Viscosity of gas mixture [g/cms];

Ps gas density [g/cm];

w, integration constant [ dimensionless].

INTRODUCTION

MANY studies of conductive heat transfer under
rarefied gas conditions have been made by a
number of investigators. It seems, however, that
only a few investigations, both experimental
and analytical, have been devoted to the study
of heat transfer from a sphere to rarefied gas
or rarefied gas mixtures in the transition regime.
Very recently, Springer and Tsai [1], applying
Langmuir’s model, proposed a new equation for
heat conduction through rarefied gases con-
tained between two concentric spheres and made
comparison with the experimental results for
air by Takao and for helium by Peterson.

In 1962, Lees and Liu [2] made an analytical
study of the conductive heat transfer from a
fine wire on the basis of the kinetic theory of
gases. Their solution was achieved by solving
the Maxwell’s transport equation on the as-
sumption that the velocity distribution func-
tion can be approximated by the two-sided
Maxwellian distribution function. Their method
could be extended to spherical geometry. Hurl-
but [3] extended the Lees and Liu’s analysis to
include arbitrary values of accommodation
coefficient o, because the analysis of Lees and
Liu was carried out only for the case of com-
plete accommodation.

This paper presents the experimental results
on the conductive heat transfer from a sphere
to a few kinds of pure gases and their mixtures
and also proposes its analytical solution, which
was in good agreement with the experimental
results. It was found that the relation between
Nusselt number and Knudsen number is the
same form as that for a cylinder.
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EXPERIMENTAL INVESTIGATION

Experimental determination of Nusselt num-
ber is based on the measurement of the resis-
tance of a nearly spherical thermistor, placed in
a rarefied gas mixture at various pressures. The
rate of generation of heat in the thermistor under
a steady state, is equal to the rate of dissipation
from the thermistor. This becomes

(RI* = Q) = hA(T - T,,). (1)

The relation between R and T for a thermistor is
expressed by

1 1
R =R exp [B (;r— - fo)} 2)

Thus, the expression for the Nusselt number is
given as follows:
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The relation between Nu and Kn can be obtained
by measuring the resistance at various gas pres-
sures under the condition of constant heating
current. )

A balanced type bridge circuit was used to
measure the resistance of the thermistor R as
shown in Fig. 1. The thermistor employed in the
measurement was produced by the Gow-Mac
Instrument Company in U.S.A. [4], and has
about 7000 Q resistance at room temperature.
Its form is beads coated by glass as small as
about 0-5 mm in diameter, and inserted into the
cylindrical hole of diameter 6 mm, drilled in
50 x 50 x 50 mm? cell block made from brass
(Fig. 2). A line power source of a.c. 100 V was
stabilized through a commercial magnetic volt-
age regulator. It was supplied to the high preci-
sion d.c. voltage regulator. The circuit indicated
in Fig. 3 is the same one as designed by Takahei
[5] The output of about 350 V d.c. is supplied to
the constant d.c. current regulator. The circuit
shown in Fig. 3 was designed by referring to the
circuit proposed by Shimoda [6]. The output
current to the bridge was chosen to be 3-8 mA.

Mercury

diffusion
pump
Manometer

Rotary vacuum
pump

Rotary vacuum
pump

Fi1G. 1. Diagram of experimental apparatus.
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The ripple was attenuated to a degree not
appreciable by a galvanometer and by a milli-
ammeter. Furthermore, the output current can
be kept constant even if the variation of the
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FiG. 2. Schematic diagram of cell block and thermistor.
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resistance of the thermistor brought large varia-
tion of the load impedance.

A gas mixture of known concentration in a
sample bulb was admitted into the cylindrical
hole in the cell block by means of a Topler pump
after the system was evacuated by a mercury
diffusion pump and a rotary vacuum pump. The
gas was compressed to the pressure of about
18 mm Hg and isolated from the vacuum system
by keeping the stopcock 1 closed. Then the gas
pressure was measured by a di-octylphtalate oil
manometer to an accuracy of 0:-1 mmHg. Then
the electric current was supplied to the ther-
mistor and maintained for several minutes
prior to the measurement of the resistance, in
order to insure the attainment of steady state
condition, which can be confirmed from the
zero deflection of the galvanometer.

The cell block was placed in a thermostat.
The temperature was regulated to maintain
31-5°C and the oscillation of the temperature
was reduced to 1ggg degC.

The details are described in our report of
“Analysis of two component gas mixture at low
pressure by a thermistor-actuated thermal con-
ductivity cell” Bulletin of The Tokyo Institute
of Technology 69, 39-47 (1965).
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FIG. 3. Electronic circuit of constant a.c. voltage regulator and constant d.c. current regulator.
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RESULTS OF EXPERIMENT

The thermistor constant B was determined in
the following way. Firstly, the resistance of the
thermistor was measured for various electric
currents and the extrapolated value at zero
current was taken as the true resistance at the
thermostat temperature. Secondly, the same
procedure was repeated changing the thermo-
stat temperature. The relation between R/R
and (T,, — T)/T,T was obtained as shown in
Fig. 4. Thus, the value of constant B was
determined to be 3500 degK from Fig. 4.

The effect of air pressure on the thermistor
resistance was measured to confirm its repro-
ducibility as indicated in Fig. 5. The results
obtained before and after a series of experiments
with hydrogen and nitrogen gas mixtures were
quite satisfactory.

The relation between the resistance of the
thermistor and the pressure for H,-N, gas
mixtures is shown in Fig. 6, in which the con-
centration was taken as a parameter. The same
relation for He-N, gas mixtures is shown in
Fig. 7.

From these results, it seems possible to
obtain the relation between Nusselt number
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F1G. 4. Variation of resistance of thermistor with temperature.

and Knudsen number with the help of equation
(3). However, it is necessary to take into account
the effect of thermal resistance of the coated glass
on the thermistor, for hydrogen or helium,
because of their high thermal conductivity.
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FIG. 6. Relation between resistance of thermistor and pressure
for H,-N, gas mixtures of various concentrations with
values of concentration as a parameter.

The correction for Nusselt number due to
this effect can be made. The apparent Nusselt
number was evaluated as a function of Knudsen
number by using the experimental results with
the aid of equation (3). The thermal conductivity
of a gas mixture 4, at the surface temperature
of the thermistor can be evaluated from the
experimental results presented in reference [7]
and from the method of Mason and Saxena [§]

n i
)"mix = z ,,XI : (4)
Zl Xibi;

i=1 ji=

in which x; is mole fraction and 4, is the thermal
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conductivity of the pure component i. The
coefficient ¢;; is given as follows:

1 M, -1 H; 4
o=G(+5) [+ (2)

The thermal conductivity data at a given tem-
perature are available from the table in refer-
ences [7, 9]. The surface temperature was
approximated by the thermistor temperature.

The characteristic length D was determined
from the following equation which means that
nD? is equal to the surface area of a spheroidal
thermistor;

2 _ ay 1
nD? = 2nb2{1 + (b) JIT= @]

1+ 1 — (a/b)*]
x In -—T/b———} (6)

where a, b denote short radius and long radius
respectively, and D was 00419 cm in this
experiment.

The heat loss @, that is, the heat conduction
from the thermistor through platinum wire
leads 276 x4 in diameter and 10 mm in total
length, (see Fig. 2) was calculated from the
following simple expression on the assumption
that the heat conduction from the wire to the
gas can be neglected. The above assumption is
valid if the wire is placed in an infinite medium.

0 = 2n6%)y I-r (7)

L

in which 9, 4,,, L denote the radius of platinum
wire, the thermal conductivity of platinum and
the length of platinum wire, respectively. Correc-
tions for radiation and free convection were
neglected because the maximum value of the
correction in the present investigation were
about 0-1 per cent, and 1 per cent, respectively.

Knudsen number for pure gas and gas mix-
tures was calculated from the following ex-
pression at the wall temperature of the cell
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FIG. 7. Relation between resistance and pressure for He-N, gas mixtures of various
concentrations with values of concentration as a parameter.
block T,, [10 1 M, A\
w [10] by = L+ o 1+(&
Kn = 8589 fmin /(T (8 v &
n = : — = 472
Dp \ M : M,
() | (10)
. . . M,
where p,.. = viscosity of gas mixture !

M = M x, + M,x,; mean molecular weight.

The viscosity of gas mixtures is obtained from
the analogous equation to the previously given
expression for the thermal conductivities, [8] or
from the experimental results presented in
reference [7];

n

.umix= Z _;l‘)iyl— (9)
T ¢

=1 &

The actual Nusselt number Nu* can be
obtained by considering of the heat conduction
in the glass region surrounded by two concen-
tric spheres, that is,

Nu*
Nu=— 4% 1
YT Nutgi (11)
52 _ S1
=277 12
T (12)

where 4;: the thermal conductivity of glass.
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FiG. 8. Schematic diagram of thermistor element.

51, S, denote the radii of inner and outer
spheres respectively (see Fig. 8).
From equation (11) it is found that Nu depends
on A, as follows:

Cy

Nu=-——+
“ 1 + ¢37mix

(13)
Figure 9 indicates Nu as a function of A, for
various gas mixtures when Kn = 001. The
constants ¢, and ¢, appearing in equation (13)
were determined from these results to be 1-79
and 0-103 respectively. The solid line in Fig. 9
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FiG. 9. Apparent Nusselt number as a function of thermal
conductivity of gas.

expresses the relation between Nu and A,
calculated from equation (13) with these con-
stants. Thus the actual Nusselt number was
obtained as follows:

Nu
1 — 00577.10%/,,, Nu

Nu* = (14)

Figure 10 gives the Nu* for various gas mixtures
and pure gas in the form of a function of Kn.
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Fi1G. 10. Relation between Nu* and Kn for various gas mixtures.
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AN ANALYSIS OF CONDUCTIVE HEAT TRANSFER
FROM A SPHERE TO RAREFIED GAS

In this section, Nusselt number was calculated
analytically as a function of Knudsen number
on the basis of the same procedure of Lees and
Liu as mentioned in the introduction.

This procedure is to solve the Maxwell in-
tegral equation of transport utilizing the two-
sided Maxwellian distribution function. Max-
well’s equation for a physical quantity  which
depends on the velocity of a molecule is given
as follows: [7, 11]
ony

o + divy mpV — n% + V. grady

+ -n?f.—gradv ¥ =Ay (15
where a bar script denotes the mean quantity

by averaging over all velocity space, and Ay,
is the change of ¥ produced by collisions.

FIG. 11. Diagram for a sphere in the spherical polar co-
ordinate system.

We consider a sphere of radius R, placed in an
infinite gaseous media of single component at an
arbitrary pressure. The temperature on the
surface is set T,, and the temperature at infinity,
T, (see Fig. 11). In the spherical coordinate
system, equation (15) can be written in the
following form:
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1
rtan@

%%r’ff}/}dzdl’-{- JfVe://dV

A 1 o
* J f<w Vol + rtanGV"‘VO)ﬁ/;dV

1 1 o
VY, — 1763 a7
+v f(r%v’ rtan 6 “’)and

r av, 16)

By applying Lee’s model, the velocity distribu-
tion function was assumed as follows:

fi=n ﬁ-l%ex —B,V?
1= Ml p[—B.V?] or

- f(.l, Vi + % V{f,)—a&dV = Ay

£l
L=mn (%) exp[—B,V?] (17)
according as

o< sy T <ug

\M\E—&,Orz—a\ﬂ\ﬁ
where ny, 1y, 8, = m/2kT, and 8, = m/2kT, are
unknown functions of radial distance. Setting
Y = m,mv,, tmv?® + uor dmv? + up,, we obtain
the following ordinary differential equations
from equations (16) (17), on the assumption that
internal energy, u is independent of molecular
velocity.

(18)
(19)
a4
sin cca’:‘(n,’l‘:L —1,T)
d _~  _ =
T Ty + 7, T5) =0 (20)
sin o & (1,TF — 7, T3
d - = Ry 1 _
- 5(”17? + 7,T}) = %L*Of—z[nl (1 — sina)
+ A, (1 + sina)jo  (21)

where all quantities are expressed non-dimen-
sionally by characteristic number density n,,
temperature T, and the radius of the sphere
R, and all dimensionless quantities are denoted
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by a bar superscript, and w is an integration
constant.

The change of ¥ produced by collisions Ay,
was expressed from Maxwell’s inverse fifth
power force law

(22)

Then the mean free path, L, and the viscosity,
U, become [2]

1 kT, \?}
L= _* 23
=50 () 23
kT
= 24
H = T4,0mRy (24)
where A = 1:3682 and
AGmV? + wV, = p/u(—34™)  (25)

where P = total pressure, and ¢!~ = radial
translational energy flux.

p = 3k [n,T,(1 — sin a)
+ n, T, (1 + sina)] (26)

¢ = 3n"*m cos? 0‘("1ﬁ1_% — mp, Y

2kt [Ro\?
=kn,T, (——-) a)<—3> .
m r
The boundary condition at¥ = l and at 7 = «

are

L -1

@7

(28)

n=n, = n,

where a denotes the accommodation coefficient.
In the present investigation, the amount of
maximum departure of T,/T, from unity was
only about 0-2, so that it will be valid to assume
that

i, =1+ N, )
i, =1+ N,

T, =1+t L (29)
T, =1+t

Ny, N, t,t, = L.
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Upon substitution of equations (29) into (18)
(19) (20) and (21), one obtains the following set
of linearized equations:

Ny + 3t = N, + 3, (30)
Ny =Ny +3t, ~ ) =w (31
sin3<xg—(N +t, — N, —t)
d.f 1 1 2 2
d
—a*f(Nl’i*ll + N, +t,)=0 (32)
., d
sina-—(N; — N, + 2t; — 2t,)
dr
d
~ L2 Ny Ny 2 2
1
~& -2 o (33)

L 7

o«

The boundary condition at infinity becomes

Fo o t, =0, N, =0. (34)
From equation (30) and equation (31},
Ly — =W (35)
N, - N, = ~}o. (36)
Then by integrating equation (32),
Ny + N, + 1, +t, = const. = tw. (37)

With the aid of the above equation and the
boundary condition at infinity, equation (33) is
integrated to give

R 1
4+t =17 L(:) w2 + w. (38)
Hence,
Ry 1
— 4 70 7
t, uw<1 + 15 L. 7) (39)
R 1
t, = %L—zw; (40)
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The boundary condition at 7 = 1 is

LL-T, _
From equation (41), (42} and (43), there follows
T, — 1
= .....(_7{__)__ (44)
4 0
— + 1
o7E L. +
At limit of Kn — 0,
Lao Tw - Too
Ogns0 = % ET (45)
We may assume for the radial heat flux ¢,
g, = (1 + Ox)g{"™ (46)

where x denotes the ratio of internal energy to
translational energy and x = [5 — 3y/3(y — 1)],
0 is a pure number and nearly unity. Therefore,
the radial heat flux in the continuum regime,
4, xn—o becomes from equation (27)

R

2k
4y, kn~0 = (1 + BK) knoo (%) 7'2

X ill»iLao(’T‘w - Too) (47)

The above expression readily yields the Fourier
law of heat conduction,

R
dr kn—>0 = }'q ?Q(Tw - Too)a

Jy = (1 + 6K) A (48)
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as we utilize the relation of A{* = L2uk/m for
a monatomic gas and equations (23), (24).
As Nu is expressed from the definition,

=hD _lz qryi:l _2'3»‘,1‘@*0,?:1

Nu =+ = T -T,

s AT, —T, 4
Qr.i= 1

X = —
Grkns0.5=1 44 Wgnoo

g

(49)

Qr,Kn -0, F=1

we eventually obtain the following expression
for Nusselt number as a function of Kn and «
with the aid of equations (44), (45) and (47):

2 L,

N = ok K=,

(50)

COMPARISON BETWEEN ANALYTICAL AND
EXPERIMENTAL RESULTS
The above relation with various values of «
are shown by solid lines in Fig. 10. The results
for some pure gases were in good agreement
with equation (47) as indicated in Fig. 10, where
the values of a for hydrogen, helium and nitrogen
were chosen as 0-3, 0-35 and 0-8 respectively. It
seems that these values of the accomodation
coefficients are reasonable in comparison with
the values obtained by other investigators, as
given in Table 1 (references [1, 10, 12] and the
tables presented in the survey report on accomo-
dation coefficient by Hartnett [13]).

Table 1. Accommodation coefficient of several gases at 300°K [1, 10, 12]

Grilly Amdur Thoms  Gregory Kennard Petersen
. . 0-62
O,-Pt 0-80 0-80 082
068
N,-Pt 081
) ' : 0-38
He-Pt 0-50 0-40 025 050
0-32
He—glass (130°C) 030
H,-Pt 040 0-30 0-20 030
H,—glass 036
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For a multi-component gas mixture, the
accommodation coefficient will be expressed by
the following equation from the energy balance

X

Lam
X
Jm
where «; is the accomodation coefficient for pure
gas, and X, is a mole fraction.

Xmix =

(51)
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CONCLUSION
Experimental study of the conductive heat
transfer from a sphere in various rarefied gas
mixtures were in good agreement with the
analytical equation (49) obtained for pure
Maxwellian gas, in which Nu correlates with
%t Kn uniquely.
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Résumé—On a mesuré le coefficient de transport de chaleur d’une sphére dans des mélanges gazeux
raréfiés dans une gamme de nombre de Knudsen Kn de 0,008 4 0,4 en utilisant une thermistance. Les
résultats expérimentaux sont en bon accord avec notre équation théorique reliant Nu a Knet a o

2
Nu=— oy
1+ (152) ank Kn

ou:

hD
Ny =

Pmix

, est le nombre de Nusselt;

; T
Kn = 8589 L , le nombre de Knudsen:
Dp M

V(M)

i=1
Omix =——, le coefficient d’accommodation;
X;
JM)
i=1
n
Hmix = 2 g viscosité;
Z xjbi;

i=1j=1

lmix = E

n
i=1j

e T [ T

Zusammenfassung—Messungen des Wirmeiibergangskoeffizienten von einer Kugel an verdiinnte Gas-

gemische wurden unter Anwendung eines Thermistors iiber einen Bereich der Knudsenzahl von Kn = 0,008

04 durchgefiihrt. Die Versuchsergebnisse fiir die Beziehung von Nu zu Kn und oy, standen in guter
Ubereinstimmung mit unserer analytischen Gleichung

2
1+ (152) agt . Kn

4,5“1—‘—, la conductivité thermique;
Y, Xy
j=1

Nu =

mit

Nu= hD

'mix

o /T
Kn = 85,89 mix \/<=> Knudsenzahl
Dp M

Nusseltzahl
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X0
V(M)
i=1
Umix =", Angleichsbeiwert

ZJ()L»

i=1

n

Loy, = § B Zahigkeit
> Xy

i=1j=1

gmixz_é i Wiirmeleitfihigkeit
Z xby;

i=1j=1
Mj* 2
G T

e

ApHoTamua—C NOMOWBI0 TEPMHCTOPA NpoBeieHH u3Mepenus kosdduuuenta nepeHoca
TeIIa OT IAPA K PA3PEHEHHLIM Ia30BEIM CMECAM B IHANA30He 3HA4YeHNH Kputepus Kuyncena
0,008-0,4. DxcnepuMenTanbHHe NAaHHBE 10 3ABUCHMOCTH Nu oT Kn 1 amix XO0pouio corjaa-
CYIOTCA ¢ HAIMM AHATHTHYECKUM ypaBHeHueM

roe
2
Nu= — "
1+ (15/2) 2t . Kn
rue
hD
Nu = — kpurepuit Hyccennra,
Amix
Hmix T
Kn = 85897 /{— kpurepuit Huyncena,
Dp M
X;0;
Z\/(Mi)
i=1
Omix = KO3(PUIMEHT AKKOMOTALNH,
Xi
V(M)
i=1
Xib
Hmix = TS KOdQPuULMeHT BAZKOCTH,
Z xj¢i1
i=1j=1
: X;A;
Amix = -, K02(GUIMEHT TETIONPOBORHOCTH,
Y X



