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HEAT TRANSFER FROM A SPHERE TO RAREFIED 
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Abstract-Measurements of the heat-transfer coefficient from a sphere to rarefied gas mixtures have been 
made over a range of Knudsen number, Kn, of 0008-0~4 by utilizing a thermistor. The experimental results 
on the relation of Nu to Kn and OL,,,~~ were in good agreement with our analytical equation 
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heat-transfer coefficient 
[Cal/s cm2 degK] ; 

electric current [A] ; 
mechanical equivalent of heat 

[J/call ; 
proportional constant in Maxwell’s 

inverse fifth power law [cm6/gs2]; 
Knudsen number [dimensionless] ; 
Boltzmann constant [erg/degK] ; 
mean free path of gas [cm] ; 
mean free path of gas mixture [cm] ; 
molecular weight [g/mol] ; 
mean molecular weight [g/mol] ; 
mass of molecule [g] ; 
apparent Nusselt number [dimen- 

sionless] ; 
actual Nusselt number [dimension- 

less] ; 
pressure [dyne/cm*], or [mmHg] ; 
heat transfer from thermistor by any 

mechanism other than conduction 
through gas, [Cal/s] ; 

radial heat flux [cal/scm*] ; 
universal gas constant [ergi 

mol degK] ; 
resistance of thermistor [Q] ; 
resistance of thermistor at tempera- 

ture T, [Q]; 
radius of sphere [cm] ; 
radial distance [cm] ; 
normalized radial distance [dimen- 

sionless] ; 
wall temperature of thermistor [“K] ; 
internal energy [erg/molecule] ; 
velocity of molecule [cm/s] ; 
external force [dyne] ; 
mole fraction [dimensionless]. 

Greek symbols 

4 cos- 1 R,/r [dimensionless] ; 

u, accommodation coefficient [dimen- 
sionless] ; 

%+a accommodation coefficient of gas mix- 
tures [dimensionless] ; 

1 
5s thermal conductivity of gas [Cal/ 

cm s degK] ; 

&nix, thermal conductivity of gas mixture 
[Cal/cm s degK] ; 

K, ratio of internal energy to transla- 
tional energy, dimensionless ; 

K viscosity of gas [g/ems] ; 

/&nix, viscosity of gas mixture [g/cm s] ; 

PT gas density [g/cm] ; 

w integration constant [dimensionless]. 

INTRODUCTION 

MANY studies of conductive heat transfer under 
rarefied gas conditions have been made by a 
number of investigators. It seems, however, that 
only a few investigations, both experimental 
and analytical, have been devoted to the study 
of heat transfer from a sphere to rarefied gas 
or rarefied gas mixtures in the transition regime. 
Very recently, Springer and Tsai [l], applying 
Langmuir’s model, proposed a new equation for 
heat conduction through rarefied gases con- 
tained between two concentric spheres and made 
comparison with the experimental results for 
air by Takao and for helium by Peterson. 

In 1962, Lees and Liu [2] made an analytical 
study of the conductive heat transfer from a 
fine wire on the basis of the kinetic theory of 
gases. Their solution was achieved by solving 
the Maxwell’s transport equation on the as- 
sumption that the velocity distribution func- 
tion can be approximated by the two-sided 
Maxwellian distribution function. Their method 
could be extended to spherical geometry. Hurl- 
but [3] extended the Lees and Liu’s analysis to 
include arbitrary values of accommodation 
coefficient CI, because the analysis of Lees and 
Liu was carried out only for the case of com- 
plete accommodation. 

This paper presents the experimental results 
on the conductive heat transfer from a sphere 
to a few kinds of pure gases and their mixtures 
and also proposes its analytical solution, which 
was in good agreement with the experimental 
results. It was found that the relation between 
Nusselt number and Knudsen number is the 
same form as that for a cylinder. 
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EXPERIMENTAL INVE!STIGATION 

Experimental determination of Nusselt num- 
ber is based on the measurement of the resis- 
tance of a nearly spherical thermistor, placed in 
a rarefied gas mixture at various pressures. The 
rate of generation of heat in the thermistor under 
a steady state, is equal to the rate of dissipation 
from the thermistor. This becomes 

0’R12 - Q) = hA(T - T,). (1) 

The relation between R and T for a thermistor is 
exnressed bv 

1 

R= R_exp[B(+-&)} (2) 

Thus, the expression for the Nusselt number is 
given as follows : 
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The relation between Nu and Kn can be obtained 
by measuring the resistance at various gas pres- 
sures under the condition of constant heating 
current. 

A balanced type bridge circuit was used to 
measure the resistance of the thermistor R as 
shown in Fig. 1. The thermistor employed in the 
measurement was produced by the Gow-Mac 
Instrument Company in U.S.A. [4], and has 
about 7000 R resistance at room temperature. 
Its form is beads coated by glass as small as 
about 0.5 mm in diameter, and inserted into the 
cylindrical hole of diameter 6 mm, drilled in 
50 x 50 x 50 mm3 cell block made from brass 
(Fig. 2). A line power source of a.c. 100 V was 
stabilized through a commercial magnetic volt- 
age regulator. It was supplied to the high preci- 
sion d.c. voltage regulator. The circuit indicated 
in Fig. 3 is the same one as designed by Takahli 
[5]. The output of about 350 V d.c. is supplied to 
the constant d.c. current regulator. The circuit 
shown in Fig. 3 was designed by referring to the 
circuit proposed by Shimoda [6]. The output 
current to the bridge was chosen to be 3.8 mA. 

Thermostat 

J Manometer 

--? 

Rotory vacuum 

pump 

--s-J 
Rotary vacuum 

pump 

FIG. 1. Diagram oiexperimental apparatus. 
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The ripple was attenuated to a degree not 
appreciable by a galvanometer and by a milli- 
ammeter. Furthermore, the output current can 
be kept constant even if the variation of the 

Thermistor block 

Thermistor element 

FIG. 2. Schematic diagram of cell block and thermistor. 

resistance of the thermistor brought large varia- 
tion of the load impedance. 

A gas mixture of known concentration in a 
sample bulb was admitted into the cylindrical 
hole in the cell block by means of a Tapler pump 
after the system was evacuated by a mercury 
diffusion pump and a rotary vacuum pump. The 
gas was compressed to the pressure of about 
18 mmHg and isolated from the vacuum system 
by keeping the stopcock 1 closed. Then the gas 
pressure was measured by a di-octylphtalate oil 
manometer to an accuracy of 0.1 mmHg. Then 
the electric current was supplied to the ther- 
mistor and maintained for several minutes 
prior to the measurement of the resistance, in 
order to insure the attainment of steady state 
condition, which can be confirmed from the 
zero deflection of the galvanometer. 

The cell block was placed in a thermostat. 
The temperature was regulated to maintain 
315’C and the oscillation of the temperature 
was reduced to & degC. 

The details are described in our report of 
“Analysis of two component gas mixture at low 
pressure by a thermistor-actuated thermal con- 
ductivity cell” Bulletin of The Tokyo Institute 
of Technology 69, 39-47 (1965). 

I 
6SL7 

Constant d.c voltage regulator 
I 

Constont d.c. current regulator 
I 

FIG. 3. Electronic circuit of constant a.c. voltage regulator and constant d.c. current regulator. 
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RESULTS OF EXPERIMENT 

The thermistor constant B was determined in 
the following way. Firstly, the resistance of the 
thermistor was measured for various electric 
currents and the extrapolated value at zero 
current was taken as the true resistance at the 
thermostat temperature. Secondly, the same 
procedure was repeated changing the thermo- 
stat temperature. The relation between R/R, 
and (T, - T)/T,T was obtained as shown in 
Fig. 4. Thus, the value of constant B was 
determined to be 3500 degK from Fig. 4. 

The effect of air pressure on the thermistor 
resistance was measured to confirm its repro- 
ducibility as indicated in Fig. 5. The results 
obtained before and after a series of experiments 
with hydrogen and nitrogen gas mixtures were 
quite satisfactory. 

The relation between the resistance of the 
thermistor and the pressure for HZ-N, gas 
mixtures is shown in Fig. 6, in which the con- 
centration was taken as a parameter. The same 
relation for He-N, gas mixtures is shown in 
Fig. 7. 

From these results, it seems possible to 
obtain the relation between Nusselt number 

0.8 - 

0,7- 

06- 

+2 0,5- 

5 

04- 

- x IO5 
Tm T 

FIG. 4. Variation of resistance of thermistor with temperature. 

and Knudsen number with the help of equation 
(3). However, it is necessary to take into account 
the effect of thermal resistance of the coated glass 
on the thermistor, for hydrogen or helium, 
because of their high thermal conductivity. 

III1 III I IIll I II I II I l 

_ After a series of experiments with 

a hydrogen and nitrogen gas mixtures 

I 

e mm Hg 

FIG. 5. Reproducibility test by air 
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2100- 
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1900- 

17cx- 
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d 

1400- 

FIG. 6. Relation between resistance of thermistor and pressure 
for HI-N, gas mixtures of various concentrations with 

values of concentration as a parameter. 

The correction for Nusselt number due to 
this effect can be made. The apparent Nusselt 
number was evaluated as a function of Knudsen 
number by using the experimental results with 

the aid of equation (3). The thermal conductivity 
of a gas mixture kmix at the surface temperature 
of the thermistor can be evaluated from the 
experimental results presented in reference [7] 
and from the method of Mason and Saxena [8] 

n 

Ami, = c xiAi 

i=l j$, ‘j4ij 

(4) 

in which xi is mole fraction and Ai is the thermal 

conductivity of the pure component i. The 

coefficient Qij is given as follows : 

(5) 

The thermal conductivity data at a given tem- 
perature are available from the table in refer- 
ences [7, 93. The surface temperature was 
approximated by the thermistor temperature. 

The characteristic length D was determined 
from the following equation which means that 
rrD2 is equal to the surface area of a spheroidal 

thermistor ; 

(6) 

where a, b denote short radius and long radius 
respectively, and D was 0.0419 cm in this 
experiment. 

The heat loss Q, that is, the heat conduction 
from the thermistor through platinum wire 
leads 27.6 p in diameter and 10 mm in total 
length, (see Fig. 2) was calculated from the 

following simple expression on the assumption 
that the heat conduction from the wire to the 
gas can be neglected. The above assumption is 
valid if the wire is placed in an infinite medium. 

(7) 

in which 6, A,, L denote the radius of platinum 
wire, the thermal conductivity of platinum and 
the length of platinum wire, respectively. Correc- 
tions for radiation and free convection were 
neglected because the maximum value of the 
correction in the present investigation were 
about 0.1 per cent, and 1 per cent, respectively. 

Knudsen number for pure gas and gas mix- 
tures was calculated from the following ex- 
pression at the wall temperature of the cell 
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FIG. 7. Relation between resistance and pressure for He-N, gas mixtures of various 
concentrations with values of concentration as a parameter. 

block T, [lo] 

K,, = 85.89 !!!? Tw 
J( > 

= 
DP M 

(8) 
X 
‘Mj a 2 

where ~,ix = viscosity of gas mixture ( >I IV, 
(10) 

i@ = M,x, + M,x, ; mean molecular weight. 

The viscosity of gas mixtures is obtained from 
the analogous equation to the previously given 
expression for the thermal conductivities, [S] or 
from the experimental results presented in 
reference [7] ; 

n 

Pxnix = c xi Pi 

i=l j$l x.i 4i.i 
(9) 

The actual Nusselt number Nu* can be 
obtained by considering of the heat conduction 
in the glass region surrounded by two concen- 
tric spheres, that is, 

NM = 
Nu* 

1 + Nu* y,&, (11) 

S2 - Sl 
Y = 2s,A, (12) 

where 2, : the thermal conductivity of glass. 
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Platinum lead 

FIG. 8. Schematic diagram of thermistor element. 

2 j \ 

I.0 - 

0.6 - 
0.6 - 
0.4. 
0.2- 

I I I 0 I I 
I.0 2-o 30 4.0 50 6.0 

x m,x x104 

st, s2 denote the radii of inner and outer 
FIG. 9. Apparent Nusselt number as a function of thermal 

conductivity of gas. 

spheres respectively (see Fig. 8). 
From equation (11) it is found that NM depends 

on jLmix as follows : expresses the relation between Nu and Amix 

NM= cl 
calculated from equation (13) with these con- 

1 + C23V,i, 
(13) &ants. Thus the actual Nusselt number was 

obtained as follows : 

Figure 9 indicates Nu as a function of /Imix for Nil 
various gas mixtures when Kn = 0.01. The Nu* = -- 

I - 0.0577 104i.,i, NU 
(14) 

constants c1 and c2 appearing in equation (13) 
were determined from these results to be 1.79 Figure 10 gives the Nu” for various gas mixtures 
and 0.103 respectively. The solid line in Fig. 9 and pure gas in the form of a function of Kn. 

Hz 10.7 % - N299, 

H, 18.2% - N,BI, 

H, 27.4%- N272 

Ii, 48.1 % - Np51, 
Hz 56.8%- Np43 

A H, 84.6% - Nz 15.4 % 

0 He 885%- N111,5% 

J# He 95.3%- N14.7% 

0.01 0.1 

Kn 

FIG. 10. Relation between Nu* and Kn for various gas mixtures. 
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AN ANALYSIS OF CONDUCTIVE HEAT TRANSFER 
FROM A SPHERE TO RAREFIED GAS 

In this section, Nusselt number was calculated 
analytically as a function of Knudsen number 
on the basis of the same procedure of Lees and 
Liu as mentioned in the introduction. 

This procedure is to solve the Maxwell in- 
tegral equation of transport utilizing the two- 
sided Maxwellian distribution function. Max- 
well’s equation for a physical quantity $ which 
depends on the velocity of a molecule is given 
as follows: f7, 111 By applying Lee’s model, the velocity distribu- 

tion function was assumed as follows : 
f3n$ 3J at + div,n$V - n-z + V.grad,r/l 

exp [ - Pt V”], or 

+ $grizd, $ = A$ (15) f2 = n2 5 * 0 exp E-PzvZ1 (17) 

where a bar script denotes the mean quantity according as 
by averaging over all velocity space, and A$, 
is the change of tG, produced by collisions. 

where nl, n2, PI = m/2kTl and f12 = m/2kT2 are 
unknown functions of radial distance. Setting 
$ = m, mu,, $mv2 + u or ($mv2 + u)v,, we obtain 
the following ordinary differential equations 
from equations (16) (17), on the assumption that 
internal energy, u is independent of molecular 
velocity. 

iiJ+ = i&T*+ (18) 

ii&+ - ii2Tzb = w (19) 

sin3 Q $ (f&T, - E2Tz) 

- $ (Qi + ti,T,) = 0 (20) 

FIG. 11. Diagram for a sphere in the spherical polar co- 
ordinate system. 

d _ --* 
sin3 ctg(n,T, - ii,T$ 

We consider a sphere of radius R, placed in an - ; (n,T; + ii*T$ = R” 1 fi L P [C, (1 - sin a) 

infinite gaseous media of single component at an 
m 

arbitrary pressure. The temperature on the + E, (1 + sin a)]w (21) 

surface is set T,, and the temperature at infinity, where all quantities are expressed non-dimen- 
T, (see Fig. 11). In the spherical coordinate sionally by characteristic number density n,, 
system, equation (15) can be written in the temperature T,, and the radius of the sphere 
following form : Ro, and all dimensionless quantities are denoted 
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by a bar superscript, and w is an integration 
constant. 

The change of $ produced by collisions A$, 
was expressed from Maxwell’s inverse fifth 
power force law 

F = rnlin& (22) 

Then the mean free path, L, and the viscosity, 
11, become [2] 

(23) 

k7 

’ = 3A,(2mR)+ 
(24) 

where A = 1.3682 and 

A($nV2 + u)v, = p//~( - @-r’) (25) 

Upon substitution of equations (29) into (18) 
(19) (20) and (21). one obtains the following set 
of linearized equations : 

N, + it, = N, + +tz (30) 

(N, - N,) + $(t, -- tz) = tr) (31) 

sin3 a$(N, + t, - N2 - tr) 

- &, + t, + N, + tz) = 0 (32) 

sin3 ~1; (N, - N, + ‘t, - 2t2) 

- $2 + N, + N, + 2t, + 2t2) 

where P = total pressure, and LI!~,’ = radial The boundary condition at infinity becomes 
translational energy flux. 

i; + X; t, = 0. N, = 0. (34) 
p = ik [n,T,(l - sin ~1) 

+ n,T, (1 + sin a)] (26) 
From equation (30) and equation (3 I ). 

4!TP’ = $7&n co? a(nJ?-+ - n,bz-l) 
t, - t, = to (35) 

= kn,T, (2% (5)‘. (27) 
N, - N, = -3~. (36) 

Then by integrating equation (32), 

The boundary condition at F = 1 and at i: = CC N, + N, + t , + t, = const. = 3~. (37) 

are 

TI - T2 
T,--T,=a; T = T2 = T,,, 

n = n2 = n, (28) 

where LY denotes the accommodation coefficient. 
In the present investigation, the amount of 
maximum departure of T,/T, from unity was 
only about 0.2, so that it will be valid to assume 
that 

_ 
nl = 1 + N, 

ii, = 1 + N, 

Ti = 1 + tl 

I 

(29) 

Tz = 1 + tz 

N,, N,, t,, t, B 1. 

With the aid of the above equation and the 
boundary condition at infinity, equation (33) is 
integrated to give 

5=z = 1 + t, = 1 + & ;c co. (42) 
m 
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The boundary condition at i: = 1 is 

Tr - i-2 
TW - T, = a. (43) 

From equation (41), (42) and (43), there follows 

W= 
ff(;r;, - 1) 

Ro 
(44) 

a&f-+1 X qr.i= 1 q,Kn (49) =-- 

Lrn r 

limit Kn --, eventually the expression 
Nusselt as function Kn a 

with the aid of equations (44), (45) and (47): 

as we utilize the relation of $?o = ypk/m for 
a monatomic gas and equations (23), (24). 

As Nu is expressed from the definition, 

L T, - T, 
wK*40 = 9” 

Ro T, 
(45) 

We may assume for the radial heat flux CJ~ 

4, = (1 + Brc)q!r~’ (46) 

where K denotes the ratio of internal energy to 
translational energy and K = [.5 - 3y/3(y - I)], 
6 is a pure number and nearly unity. Therefore, 
the radial heat flux in the continuum regime, 

Nu = 
2 

1 + YKna-l 
Kn=k. (50) 

0 

~O~~~ON HELEN ANALYTICAL AND 
EXPERIMENTAL RESULTS 

The above relation with various values of a 
gl, Kn-tO becomes from equation (27) 

2k 

are shown by solid lines in Fig. 10. The results 
for some pure gases were in good agreement 
with equation (47) as indicated in Fig. 10, where 
the values of a for hydrogen, helium and nitrogen 

T,). (47) were chosen as 0.3, 0.35 and 0.8 respectively. It 
_ _ 

The above expression readily yields the Fourier seems that these values of the accomodation 

Iaw of heat conduction, coefficients are reasonable in comparison with 
the values obtained by other investigators, as 
given in Table 1 (references [l, 10, 12: and the 
tables presented in the survey report on accomo- 

(48) dation coefficient by Hartnett [ 13)). 

Table 1. Accommodation coefJicient of several gases at 300°K [i, 10, 121 

Grifly Amdur Thorns Gregory Kennard Petersen 

O,-Pt 0.80 0.80 

N,-Pt 

0.62 
0.82 

068 
0.81 

He-I% 0.50 040 0.25 038 
@50 

He-glass 

H,-Pt 
Hz-glass 

032 
(130°C) o.30 

040 0.30 0.20 0.30 
@36 
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For a multi-component gas mixture, the 
accommodation coeffkient will be expressed by 1 
the following equation from the energy balance 

c 

Xicli 2 

%ix = 
Jmi 

c 

I 
;Ai 

(51) 3, 

4. 

where cli is the accomodation coefficient for pure 
gas, and xi is a mole fraction. 
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FIG. 12. Relation between Nu* and Kn a,$ 

Figure 12 indicates the relation between Nu* 
and GI- ’ Kn for various gas mixtures, in which 
c(,,,~~ is evaluated from equation (50). 

CONCLUSION 

Experimental study of the conductive heat 
transfer from a sphere in various rarefied gas 
mixtures were in good agreement with the 
analytical equation (49) obtained for pure 
Maxwellian gas, in which Nu correlates with 
0&i; Kn uniquely. 
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Rbmn~On a mesure le coefficient de transport de chaleur dune sphere dam des melanges gazeux 
rarefies dans une gamme de nombre de Knudsen Kn de 0,008 a 0,4 en utilisant une thermistance. Les 
resultats experimentaux sont en bon accord avec notre equation thtorique reliant Nu a Kn et a E,,,~,: 

2 
Nu = 

1 + (15/2) ct;,j,. Kn 

Nu = ‘ID, est le nombre de Nusselt ; 
‘Jmix 

Kn = 8589k 
’ DP 

n 

i=1 

a =-, le coefficient d’accommodation; m,r n 

pmir = la viscosit6 ; 

n 

Anix = c %A, --, 
C xjdij 

la conductivitt thermique; 

i=* j=1 

Zuaammenfassung-Messungen des Warmeiibergangskoeffizienten von einer Kugel an verdiinnte Gas- 
gemische wurden unter Anwendung eines Thermistors tiber einen Bereich der Knudsenzahl von Kn = 0,008- 
0,4 durchgeftihrt. Die Versuchsergebnisse fur die Beziehung von Nu zu Kn und amii standen in guter 

Ubereinstimmung mit unserer analytischen Gleichung 

2 
Nu = 

1 + (1512) c&i. Kn 

mit 

Nu = $r& Nusseltzahl 
nlli 

Kn = 85,89& 
DP 
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n 

n 

lmi, = c : 
xi,.; 

y XjC#lij’ 
Wlrmeleitftihigkeit 

i=l jT1 

AEEOTMWI-C IIOMOWbIO TepMHCTopa ItpOBeneHbI a3MepeHHR KO3I#@~tieHTa nepeHoca 

TelIJtaOTUIapaKpa3petKeHHbIM Fa3OBbIM CMeCRM B@aIIa3OHe 3Ha~eHIltlKpMTepHR )EHyfiCeHa 

0,@%--0,4. aKCrIepMMeHTaJIbHbIe AaaHbIe no 3aBRCHMOCTm Nu OT Kn B amix XOpOluO corna- 
CytOTCU C HaUItlM aHaJlHTHYeCKAM ypaBHeHHeM 

we 

2 mu=---------__ 
1 + (1512) z,&. Kn 

Nu = $? 
*mix 

KpllTepllfi HyccenbTa, 

KpKTepllti KaynceHa, 

amir = K03$&ILJHeHT aKKOMOAal(HH, 


